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A robust efficient upwind implicit time-marching algorithm for the two-dimensional unsteady
Thin-Layer Navier—Stokes equations, employing subiterations, is presented, especially directed
to the aeroelastic analysis in viscous transonic flow. The purpose of using subiterations is to
accelerate steady-state convergence and to permit a large time step in time-accurate simula-
tions, thereby reducing the computational cost, while maintaining adequate accuracy. The
ability of the method is demonstrated for the cases of inherently unsteady flow due to
shock-induced separation, forced vibrations with large time steps, O(10) per period, and an
aeroelastic analysis of a two-degree-of-freedom airfoil. ( 1998 Academic Press
1. INTRODUCTION

FOR MORE THAN A DECADE, time-marching aeroelastic solution procedures have been an
important topic of research, primarily motivated by the steadily increasing attention to
nonlinear aeroelastic phenomena, especially to the prediction of the decrease of aerodynam-
ic damping occurring in transonic flow.

The early attempts to obtain a two-dimensional nonlinear time-marching aeroelastic
method for transonic flow employed a transonic small disturbance (TSD) flow model. Most
of these methods may be found in the systematic comparison of Edwards et al. (1982), which
also describes an efficient integration method for coupled aeroelastic equations. From the
many developments using the unsteady full-potential flow model, only a few time-marching
aeroelastic solutions have been reported. The work of Ide & Shankar (1987) and Hounjet
& Eussen (1994) are two of them. The application of the Euler equations for aeroelastic
analysis in transonic flow was initiated by Bendiksen & Kousen (1987) with a modified
explicit algorithm of Jameson. This development towards a more complex aerodynamic
model was made possible not only by the advancements in CFD, but also by the availability
°This article is a revised version of the paper presented at the 1995 International Forum on Aeroelasticity and
Structural Dynamics, 26—28 June 1995, Manchester, U.K.

0889—9746/060655—22 $30.00 ( 1998 Academic Press



656 B. B. PRANANTA E¹ A¸.
of adequate computing power at a reasonable price. Later, Kousen & Bendiksen (1988)
reported the possible occurrence of limit-cycle oscillations, which is a purely nonlinear
phenomenon. Wu et al. (1989) presented time-marching aeroelastic results of two-dimen-
sional configurations employing the Thin-Layer Navier—Stokes (TLNS) flow model.
Guruswamy (1990) reported results for two-dimensional and three-dimensional configura-
tions where the latter featured vortical flow.

These advancements in the time-marching aeroelastic analysis were mainly aiming at
a better understanding of the transonic aeroelastic problem by applying physically refined
unsteady aerodynamic models. Their applications are usually complex and expensive in
terms of required computer resources. Aspects concerning industrial application, e.g.
efficiency, cost and ease of usage, etc., have been hardly addressed. At the National
Aerospace Laboratory in Amsterdam proper attention has been given to these aspects, with
the development of the aeroelastic simulation method AESIM, based on the Clebsch
potential; see Hounjet & Eussen (1994). The recent paper of Alonso & Jameson (1994)
gives similar attention for a time-marching aeroelastic method employing the Euler
flow model. These authors employ an implicit method based on the pioneering work of
Jameson (1991), which allows the use of relatively large time steps while maintaining
temporal accuracy. It is shown that the method has gained efficiency in time-marching
aeroelastic analysis through its ability to march with large time steps. Later Alonso et al.
(1995) also presented time-marching aeroelastic results using the Navier—Stokes flow
model.

In this paper, an alternative time-marching aeroelastic method employing the Euler/
Navier—Stokes flow models is presented, which has a capability of marching with time steps
solely determined by the physics and not by stability considerations. The Euler/TLNS
equations are solved using an unfactored implicit method employing a relaxation technique
for the subiterations. The aero-structural equations are solved using the Newmark method.
Contrary to the method of Jameson (1991), the present method is not critical to acceleration
techniques (e.g. multigrid, local time stepping and residual averaging).

The two-dimensional work presented in this paper serves also as a pilot work in the
development of a three-dimensional computational aeroelastic simulation method which
has recently been presented in Prananta & Hounjet (1996) and Prananta & Hounjet (1997).
Similar work on three-dimensional aeroelastic analysis using Euler/Navier—Stokes equa-
tions was presented by Guruswamy (1991), Rausch et al. (1992) and Lee-Rausch & Batina
(1993). In Rausch et al. (1992), unstructured meshes are used and a temporal integration
method employing point Gauss—Seidel relaxation is adopted. In Lee-Rausch & Batina
(1993) and Guruswamy (1991) structured meshes are used and a first-order one-step
temporal integration method is applied. The first employs an implicit approximate factoriz-
ation method while the latter employs the LU-ADI method. The requirement for extension
to three-dimensional configurations has primarily motivated the application of a temporal
integration method employing a relaxation approach, like in Rausch et al. (1992), due to its
favourable stability properties for two- and three-dimensional configurations. In combina-
tion with structured meshes a line relaxation is adopted for a faster convergence. To allow
large time stepping, second- and third-order temporal integration methods are applied in
the present work.

In the following sections, the techniques which are incorporated in the computa-
tional method will be discussed. Prior to aeroelastic applications, the method will first
be validated for steady and unsteady flow simulations. In order to investigate the effect
of viscosity on the aeroelastic behaviour at transonic speeds, results of aeroelastic
simulations are presented with the aerodynamic part in the Euler as well as in the
Navier—Stokes mode.
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2. AERODYNAMIC MODEL

For flows at high Reynolds number, the viscous effects are concentrated in a layer close to
the solid boundary, for which the Thin-Layer assumption is appropriate. In streamwise
direction, where the convective behavior is dominant, the viscous terms are neglected. The
governing equations are transformed from the Cartesian physical domain to a uniform
computational domain as m"m (x, z, t), f"f (x, z, t) and q"t. In a curvilinear coordinate
system, the TLNS equations can be written in a conservative form as
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contravariant velocities on a fixed mesh. The hat (') denotes an unscaled quantity (some
metrics and velocities) with respect to h"J~1. It should be noted that the conservative
form of the governing equations in the transformed coordinate system are obtained by
assuming the following transformation invariants are satisfied:
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Equation (4) is usually called the geometric conservation law, e.g. in Thomas & Lombard
(1979) and Obayashi (1992). To avoid nonphysical sources in the discretized equations,
equations (3, 4) have to be satisfied by the discretization method. According to the thin-
layer assumption the viscous term G]

v
can be written in a very simple form as compared to

the one often presented in the literature, namely,
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where the flow variables have been separated from the metrics to facilitate the calculation of
the Jacobian. In equation (5) the Stokes hypothesis for bulk viscosity is used where
j#2k/3"0 and all derivatives in m direction have been dropped. The metric functions
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The density has been nondimensionalized by o
=
, the velocity by a

=
, the pressure by o

=
a2
=
,

the energy per unit mass by a2
=
, the coefficient of viscosity by k

=
, and the coordinators by

¹
c
. The perfect gas relation is used to close the equations by relating the pressure to other

flow variables by p"(c!1)o[E!1/2(u2#w2)]. For turbulent flow calculations,
Reynolds averaging is applied and density-weighted mean turbulent variables are used.
Following the eddy viscosity concept, the dynamic viscosity k and the heat conduction
coefficient have laminar and turbulent contributions:
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The laminar contribution is obtained through the use of Sutherland’s law for molecular
viscosity, while the turbulent contribution is obtained from the algebraic turbulence model
of Baldwin & Lomax (1978). The Prandtl number is taken to be constant, Pr

L
"0)72 and

Pr
T
"0)90.

Equation (1) is discretized using a cell-centred finite-volume method:
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semi-discretized equations in a uniform computational domain read
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where Q represents a cell-averaged value of the conservative variable. h/q is calculated
from the contravariant grid speed using equation (4). For a strictly A-stable scheme, at most
second-order-accurate discretization may be applied for Q/q. The second-order scheme
gives satisfactory results in most cases and is the default scheme of the present method.
However, third-order-accurate backward differencing for Q/q, which is defined as stiffly
stable by Gear (1971), is also applied for some results presented here. Although the stability
region of a stiffly stable scheme does not cover the imaginary axis, it should not cause
problems since an upwind scheme is applied for the spatial discretization.

The contravariant grid speed is calculated from the deformation of the mesh caused by
the motion of the airfoil. This motion is prescribed in case of forced vibration, and for an
aeroelastic simulation case it is determined by the solution of the elasto-mechanical
equations. Here the elasto-mechanical equations are solved using a two-level scheme, viz.,
the Newmark method. In this case, the contravariant grid speed at a cell face, mª n,n`1

t
or

fª n,n`1
t

, is calculated on the ‘‘space—time’’ area formed by a cell face at two structural levels.
For a three-level scheme, e.g. the second-order implicit backward Euler scheme, the
contravariant grid speed is calculated as
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This way of calculating the contravariant grid speed was shown by Obayashi (1992) to be
consistent with the rate of change of the cell volume which implies equation (4) is implicitly
satisfied.

2.1. INVISCID FLUX

The choice of the inviscid flux discretization between central and upwind method is mainly
determined by the requirement of the present time integration method. Since relaxation is
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applied in each time step, a well-conditioned Jacobian matrix is required. Discretization
using an upwind method will result in a diagonally dominant Jacobian matrix. The
importance to apply a high-resolution scheme for the inviscid part of the Navier—Stokes
equations was discussed by Swanson & Turkel (1993). Flux difference splitting (FDS) meets
this requirement and is thus applied in this study, where the approximate Riemann solver of
Roe (1981) is employed. Roe’s method, which is based on a special linearization of the Euler
equations, is computationally simple and easy to extend to moving grid problems. Roe’s
FDS is also known to be insensitive to grid stretching, commonly involved in
Navier—Stokes calculations.

The flux at a cell face is calculated from the solution of a locally one-dimensional
Riemann problem. For instance, the flux in m direction, thus at cell face (i$1

2
, j) , is
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where the geometrical data at the cell face are used. Q` and Q~ are the states on the two
sides of the cell face. QM "QM (Q`, Q~) is the state at the cell face calculated using Roe’s
averaging of Q` and Q~, and A]"E] /Q is the Jacobian of the flux. DA] D is calculated as
RD"D¸, where the columns of R and the rows of ¸ are the normalized right and left
eigenvectors of AK (QM ), respectively. The matrix of the right eigenvectors is
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and the matrix of the left eigenvectors is
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where k"1
2
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a quantity normalized by D+mD. Roe’s averaging is applied to (o, u, w, H) and a"cN (H!k).
The eigenvalues j are º] , º] , º] !a, º] #a. It can be seen that the grid speed influences the
flux difference through the eigenvalues. When the flux is evaluated using the value of
Q adjacent to the cell face, the scheme is of first-order-accurate and ‘‘total varia-
tion diminishing’’ (TVD). To obtain a higher-order scheme while maintaining the TVD
property, the states at the two sides of the face are obtained using the MUSCL variable
extrapolation of Van Leer:
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for a third-order upwind bias scheme. The function s serves as a limiter for
higher-order gradients to preserve the monotone behaviour of the first-order scheme. There
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are many proper choices for the limiters, here the one of van Albada is applied because of its
continuous behaviour:

s"
2dQ`dQ~#e

(dQ`)2#(dQ~)2#e
. (13)

The small number e assures the limiter to have a correct behaviour in the smooth regions.

2.2. BOUNDARY CONDITIONS

All boundary conditions are imposed in an explicit manner. Owing to the fact that in each
subiteration the boundary condition is updated, they should converge together with the
flow equations. At the airfoil surface the normal velocity vanishes for the inviscid case, and
for the viscous case the tangential velocity vanishes as well. The pressure on the airfoil
surface in the inviscid case is obtained through the normal momentum equation,
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For viscous flow, a zero normal pressure gradient is prescribed, which is approximated
simply as p/f"0.

At the outer boundary, far from the airfoil, the flow is practically inviscid, so that
boundary conditions for the Euler equations are applied. The locally one-dimensional
boundary condition based on Riemann invariants is applied.

2.3. TIME-STEPPING METHOD

The classical one-step method employing approximate factorization, which is efficient for
steady flow calculations, reveals limitations in both stability and accuracy for unsteady flow
applications. The stability is known to be limited by the factorization error which becomes
even worse in the case of three-dimensional flow. The accuracy limitation stems from the
fact that, in each time step, only a linearized equation is solved. This means that
the nonlinear equation is satisfied only at the steady level. To allow large time steps while
sustaining accuracy, both deficiencies have to be resolved. In the present study an unfac-
tored method is employed for solving the discretized equations which removes the stability
limit, and subiterations are employed at each time step to satisfy the nonlinear unsteady
equations.

The residual at a time level is defined by equation (8). The subiteration scheme is obtained
via Newton’s method:

R(Qp)

Q
*Qp"!R(Qp, Qn, Qn~1) , (15)

where p is the subiteration level, Qp is the approximation to Qn`1 and *Qp is Qp`1!Qp.
The accuracy of the subiteration scheme is determined only by the right-hand side (Rhs),
while the left-hand side (Lhs) determines the rate of convergence. Quadratic convergence of
the Newton’s method is obtained if the Lhs is the exact Jacobian of the Rhs and inverted
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exactly to obtain the correction. An inexact Lhs and an approximate inversion may be used
for obvious reasons, at the cost of losing the quadratic convergence.

For efficiency and robustness, the Jacobian is always discretized in a first-order manner,
regardless of the order of accuracy of the residual. In this way, the diagonal dominance of
the Lhs is ensured for any time step. An approximate inversion can then be carried out using
a relaxation scheme. The equation for the subiterations reads
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and where c
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for a second-order scheme and c
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for a third-order scheme. The
exact Jacobian of the inviscid flux using Roe’s FDS is very complicated and expensive to
calculate, [see Barth (1987)], so that a simplified Jacobian is used instead, as follows:

AB"1
2

A(QB)$1
2

DA (QM )D and CB"1
2

C(QB)$1
2

DC (QM ) D .

It may be expected that due to these approximations the convergence will be slower, but
during numerical experiments the method performed well and turned out to be very robust.

When a local time step is applied on the Lhs, the time-stepping method becomes similar
to the approach of Jameson (1991) in which an explicit subiteration scheme is employed. In
this case the local time step should be set to

*q"min(*q
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Here temporal integration with a local time step is only needed to start the simulation. After
a number of steps, a very large global time step may be used to obtain fast convergence to
steady state.

In solving equation (16), a line relaxation is employed with direct inversion along f lines.
The direct inversion should resolve stiffness due to the mesh stretching and implicitly
handles the viscous terms which have an elliptic behavior. To account for the nature
of signal propagation and for stability reasons when the Rhs is of higher-order
accurate, forward and backward sweeps are carried out in m direction. The forward sweep
from m
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which results in an intermediate solution *QM , followed by the backward sweep,
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where u
l
"0)80!0)90. Due to the differences of the Lhs with the exact Jacobian of the

Rhs only a part of the correction is used to update Q: Qp`1"Qp#u*Q, where
u"0)30!0)60.

When the iteration is started from a poor initial guess (e.g. the freestream condition) more
than one iteration is needed before the residual is updated. After a number of time steps, the
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residual is updated after every sweep to obtain faster convergence. In this case the scheme
represents a nonlinear relaxation method and u

l
should be set to u

n
"0)30!0)40. The

subiteration is stopped once DRn`1,pD drops below a prescribed value. This criterion is
different from the one applied by Jameson (1991) where DRn`1,pD/DRn`1,0D is used. The
present choice has been made after having observed that sometimes in the beginning of
a subiteration the value of the unsteady residual is already very small, so that setting the
convergence criterion relative to this level would lead to an unnecessarily too stringent
condition.

2.4. GRID GENERATION

The initial grids for the calculations carried out in this paper have been generated using
a transfinite interpolation employing Hermite polynomials and an elliptic smoother similar
to Thompson (1987). In the case of moving boundaries, the grid has to conform to the
surface at each time step. For the results presented in this paper, rigid mesh motion has been
employed because the chordwise flexibility is not considered. Flexible mesh motion employ-
ing the spring analogy of Batina (1989) has also been applied without any significant
difference in the resulting pressure distribution.

3. AEROELASTIC EQUATIONS

The equations of motion of a rigid airfoil having two degrees of freedom, heaving and
pitching about the elastic axis (h, a) , may be derived by balancing the force and moment
about the elastic axis. This results in two equations:
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where nondimensional structural parameters have been used. Since both aerodynamic and
structural equations will be integrated simultaneously, the nondimensional time steps of
these two sets of equations have to match. The characteristic time for the aerodynamic part,
c/a

=
, is used for the whole set of equations, to arrive at
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where »* is the speed index. In case the accuracy of the structural part defines the time step
for the whole set of aeroelastic equations, one might adopt the structural time, q

s
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scaling factor between aerodynamic and structural time steps is then *q
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(»*Jk*q). Equation (17) can be brought into a standard state-space representation as
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In the classical aeroelastic approach, the aerodynamic forces are divided into motion-
dependent and motion-independent contributions (separation, wake, gust, etc.). Since in
nonlinear cases this superposition principle cannot be applied, equation (17) treats the
aerodynamic force as just one term, º(X, t). Moreover, since in general the explicit relation
between º and X can hardly be obtained in a simple manner, the aerodynamic forces will
be treated as an excitation to the structural system; thus º"º (t). The nonlinear coupling
is effected via the boundary condition at the airfoil surface. The solution of equation (18) can
be obtained using the standard matrix-transition method as

Xn`1"UXn#HºM ; (19)

HºM represents the nonhomogeneous part of the solution of equation (18), where a constant
aerodynamic force ºM is assumed between time level n and (n#1). See Edwards et al. (1982)
for a detailed description of the method for aeroelastic applications. In the present study,
a simpler method, namely the Newmark scheme with parameters resembling a trapezoidal
scheme, is applied. This scheme is known to be neutrally stable, so that it does not introduce
artificial damping. In this case, U and H are
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2
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CI#
Dq
2

AD ,
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Dq
2

AD
~1

Dq B. (20)

At the beginning of time step (n#1), ºM is approximated as ºM +3
2
ºn!1

2
ºn~1. Sub-

sequently, after an approximation of the position of the airfoil at (n#1) is obtained,
ºn`1 can be calculated to improve Xn`1, using ºM "1

2
(ºn#ºn`1).

4. RESULTS

The present method has been validated for unsteady flow applications, as well as steady
flow ones.

4.1. STEADY FLOW

A steady viscous flow case of RAE2822 airfoil is considered at M
=
"0)729, a

%91
"2)92°,

Re
=
"6)5]106 and a forced transition at 3% chord. Comparisons are provided by

experimental data from Cook et al. (1979) and the Navier—Stokes method NLR-MUTU2D
described in Haase et al. (1993). All calculations have been performed at a corrected angle of
attack of a

#033
"2)31°. Figure 1 shows the comparisons of distribution of pressure and

friction coefficients. The comparison of the aerodynamic coefficients is shown in Table 1.
Overall, good agreement is obtained between the results.

4.2. UNSTEADY FLOW, STATIC GRID

The well-known unsteady flow test case of 18% circular arc airfoil of Seegmiller et al. (1978)
is presented. The flow condition is M

=
"0)76 and Re

=
"11]106. The present result is

obtained using a C-mesh of 140]60 with 100 points on the airfoil. The experiment was
carried out in a curved-wall tunnel, while the calculation is performed with a freestream
outer boundary at 10 chords away. The time history of the lift and moment coefficients is
shown in Figure 2. This result was obtained using a time step of 0)10 with 8 subiterations per



Figure 1. Comparison of calculated and experimental pressure coefficient and friction coefficient distributions
for an RAE 2822 airfoil at M

=
"0)729, a

%91
"2)92° and a

#033
"2)31°; x is non dimensionalized with respect to c.

TABLE 1

Comparison of the aerodynamic coefficients of the present
method, the NLR MUTU2D and the experiment of Cook et al.

(1979)

C
L

C
M

C
D

Present result 0)748 !0)098 0)0150
NS-NLR (MUTU2D) 0)777 !0)105 0)0149

Experiment 0)743 !0)095 0)0127
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time step producing a maximum CFL number of about 18 000; 500 time steps were needed
to reach a nondimensional observation time of 50. The instantaneous Mach contour at four
time levels are presented in Figure 3 showing the moving shocks, strengthening in upstream
and weakening in downstream direction. The reduced frequency, which is calculated by
identifying the period of oscillation, is presented in Table 2. The occurrence of unsteady flow
like in the experiment and the agreement of the frequency give confidence in the time
integration method and the modeling of turbulence.

4.3. UNSTEADY FLOW, FORCED VIBRATION

The responses of a rigid NACA0012 airfoil under forced vibrations are analysed here to
asses the performance of the solver. The inviscid flow results were obtained using a grid with



Figure 2. Time histories of lift coefficient, C
L
, and moment coefficient, C

M
, about the quarter-chord of an 18%

circular arc airfoil at M
=
"0)76 and Re

=
"11]106; t is nondimensionalized with respect to c/a

=
.

Figure 3. Instantaneous Mach contours at four time levels (*M"0)10) of 18% circular arc airfoil at M
=
"0)76

and Re
=
"11]106.
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a size of 140]30 and the viscous flow calculations were carried out on a grid of 140]60.
Both grids have 100 points on the airfoil surface. The outer boundary is placed at 40 chords
from the airfoil. For the viscous flow calculations, the average distance of the first point
away from the surface is about 6]10~6 chord.



TABLE 2

Comparison of reduced frequency obtained using the present method with the
experiment of Seegmiller et al. (1978)

k, based on chord

Present result 10 chords away freestream boundary 0)50
Experiment Curved-wall tunnel 0)49
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4.3.1. NACA0012 airfoil, inviscid flow

An example of an unsteady inviscid flow application of the method is shown in Figure 4.
This is the case of an oscillatory pitching motion about the quarter-chord of the NACA0012
airfoil at transonic conditions, M

=
"0)754, a

.%!/
"2)00°, a

!.1
"2)50° and k"0)082

based on semichord. This case reveals strong nonlinearities, since a strong shock is
involved and the shock trajectory is significant. Results of the present method are
compared with those of TULIPS, a full-potential flow method of Schippers (1988), an
extended version of this method of Westland & Hounjet (1993) and an Euler method
of DLR. The extended TULIPS method employs the Clebsch potential with entropy
and vorticity corrections for the modeling of strong shock waves. The DLR-Euler method
uses an explicit method to march in time; the description of the method can be found in
Polz (1991).

Figure 4 shows the comparison of lift and moment coefficients. The results of the present
method, the DLR-Euler method and the extended TULIPS method agree very nicely. The
TULIPS full-potential flow result shows a consistent difference to the Euler results. The
hardly noticeable difference between the results of the present implicit method and the
explicit method of DLR confirms the applicability of the present time-stepping strategy.
The present result was obtained using 48 time steps per period of oscillation, and at each
time step 8 subiterations were employed. The time needed to run one period of oscillation
was less than 2 min on a SGI (R8000/R8010 chips) workstation. The adequacy of the
present method for the current case is presented in Figure 5 and in Table 3 which
demonstrate the computational efficiency for several variations of the iteration strategy.
The lift and moment coefficients show a very good agreement even for an extremely low
number of steps per period.

4.3.2. NACA0012 airfoil, viscous flow

Two cases are considered in this section. The first case is again the NACA0012 airfoil at
transonic conditions, M

=
"0)754, Re

=
"5)7]106, a

.%!/
"2)00°, a

!.1
"2)50° and

k"0)082. The experimental result is taken from Wood (1979). The transition was forced at
10% chord. Figure 6 shows the comparison of the experimental and the calculated results.
It can be concluded that only during the up-stroke the lift and moment are reproduced
relatively well. The discrepancy between the results starts near the maximum angle of attack
and is most probably due to the inadequacy of the algebraic turbulence modeling to treat
a strong shock properly. During the down stroke, only the second half is satisfactorily
predicted.

Another application of the present TLNS solver is shown in Figure 7 for the AGARD
standard test case of transonic viscous flow, case 3 of Landon (1982). The flow conditions
are M "0)60, Re "4)8]106, a "4)86° and the boundary layer is fully turbulent.
= = .%!/



Figure 4. Comparison of calculated lift coefficient and moment coefficient about the quarter-chord of
NACA0012 at M

=
"0)754, a

.%!/
"2)00° , a

!.1
"2)50° and k"0)082, based on semichord.

Figure 5. Comparison of lift coefficient and moment coefficient about the quarter-chord for a variety of iteration
strategies of the inviscid flow case.
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TABLE 3

CPU time comparison of running strategies for the inviscid
flow case shown in Figure 5

*q/period Subiteration Q/q CPU-time (min/period)

48 8 2nd order 1)74
24 8 2nd order 0)87
12 12 3rd order 0)64
8 12 3rd order 0)43

Figure 6. Comparison of calculated and experimental lift coefficient and moment coefficient about the quarter-
chord during oscillatory pitching motion of a NACA0012. M

=
"0)754, Re

=
"5)7]106, a

.%!/
"2)00°,

a
!.1

"2)50° and k"0)082, based on semichord.
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The mode of vibration is a pitching oscillation about quarter-chord with an amplitude of
a
!.1

"2)44° and k"0)081 based on semichord. Figure 7 shows the results of the test case.
Excellent agreement of both calculated results is obtained for the lift and the moment
coefficients. The agreement with the experimental data is also good, as far as the lift
coefficient is concerned, but less satisfactory for the moment coefficient. The present results
were obtained using 400 steps per period of oscillation with 4 subiterations in each time
step. The CPU time was 35 min on a SGI (R8000/R8010 chips) workstation. The maximum
CFL number during the calculation was about 55 000. The adequacy of the present method
for the current case is presented in Figure 8 and in Table 4 where the computational
efficiency is demonstrated for several iteration strategies. The lift coefficient shows a very
good agreement even for a very low number of steps per period. The moment coefficient
shows a more sensitive behaviour. Some differences are apparent, but the extremities appear
to be captured well enough by all strategies. It is generally known that the result obtained



Figure 7. Comparison of calculated and experimental lift coefficient and moment coefficient about the quarter-
chord during oscillatory pitching motion of NACA0012 at M

=
"0)60, Re

=
"4)8]106, a

.%!/
"4)86°, a

!.1
"2)44°

and k"0)081, based on semichord.

Figure 8. Comparison of lift coefficient and moment coefficient about the quarter-chord for a variety of iteration
strategies for the viscous flow case.
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TABLE 4

CPU time comparison of running strategies for the viscous flow
case shown in Figure 8

*q/period subiteration Q/q CPU-time (min/period)

400 4 2nd order 35)45
100 4 2nd order 8)83
24 12 3rd order 6)25
16 12 3rd order 4)46

Figure 9. Time responses close to the flutter boundary for the inviscid flow case.
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with FDS needs less grid points. compared to flux-vector splitting (FVS) which is more
diffusive and therefore more robust. The results of Rumsey & Anderson (1988) were
obtained using FVS to obtain large time step. The present result was obtained using FDS
(with a coarser grid) and moreover with a larger time step, thus a saving compared to the
method of Rumsey & Anderson (1988) is obtained.

4.4. AEROELASTIC CASE

In this section, a flutter analysis is applied to a NACA64A010 airfoil moving in two degrees
of freedom. The test case A of Isogai (1981) is considered with the following nondimensional
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structural parameters, a"!2)00, xa"1)80, r2a"3)48, and a ratio of uncoupled frequencies
u

h
/ua"1)00. The value of a shows that the elastic axis is located half a chord in front of the

leading edge which represents a typical section for a swept wing. The wind-off coupled
frequencies are 0)7134ua and 5)338ua. In case of viscous flow, the Reynolds number is
Re

=
"6]106. The mass ratio is k"60. The analysis proceeds by first calculating the

steady-state condition at a certain Mach number. The airfoil is then excited sinusoidally in
a pitching mode about the elastic axis at the frequency ua and with an amplitude of 1.00°.
After 2 periods of forced oscillation, the airfoil is set free for another 4 to 5 periods to obtain
the response.

The time needed for one run is about 15 min for an inviscid flow computation and about
90 min for a viscous flow computation. The viscous flow case takes much longer CPU time
since it needs a smaller time step and also a finer grid.

The obvious consequence of an aeroelastic case is that the grid and metrics have
to be recalculated not only at each time step but also during subiterations to arrive at
a fully converged aeroelastic solution. From numerical experiments it turned out that
the recalculation of grid and metrics at the subiterations is not needed for viscous
flow calculations, because then the time step which is determined by the accuracy of
the aerodynamic part is relatively small. When inviscid flow simulations are performed
which involve relatively large time steps, only one correction is applied, and the method
resembles a predictor—corrector scheme for the aeroelastic equations. Figures 9 and 10
show typical time responses close to the lowest flutter boundary at various Mach numbers
Figure 10. Time responses close to the flutter boundary for the viscous flow case.
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for inviscid and viscous flows. The mode depicted by heave and pitch at almost the same
phase is mostly bending with the node in front of the elastic axis. For both cases, by the
increase of Mach number, the node moves towards the airfoil. An exception is for the
inviscid flow response at M

=
"0)90, where the mode is mostly rotation about a center at

the airfoil.
Figure 11 compares the flutter speed indices obtained using the present inviscid

flow method with inviscid flow results obtained by Isogai (1981) using a TSD method
Figure 12. Comparison of calculated nondimensional frequencies at the flutter boundaries for the inviscid flow.

Figure 11. Comparison of calculated flutter boundaries for the inviscid flow.
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and by Bendiksen & Kousen (1987) using an Euler method. As a reference, calcu-
lations using linear thin-airfoil theory are also presented. Flutter speed indices were
calculated starting from M

=
"0)75 to M

=
"0)95, with an increment of 0)025. The

present inviscid flow results compare fairly well with the other results. The bottom
of the dip is predicted at »*"0)53, which is close to the TSD result. Until M

=
"0)875

the lowest flutter is primarily due to the first mode which is mainly bending with a
frequency close to the first coupled wind-off frequency. Thereafter a bulge occurs
causing multiple flutter points. At M

=
"0)90 the flutter is now primarily due to the

second mode, which is mainly rotation. This situation can be seen from the time response of
Figure 9.

Figure 11 shows that the second mode flutter starts already from M
=
"0)85 at a speed

index higher than the first mode flutter. It should be noted that the flutter point at
M

=
"0)90 and the adjacent one at M

=
"0)9125 have a very different character, the first

representing primarily the second mode and the latter primarily the first mode. This
difference cannot be seen from Figure 11 but is indicated clearly in Figure 12. Figure 13
shows the comparison between the viscous and inviscid flow results. The viscosity apparent-
ly reduces the dip, fills up the bulge and passes the higher-frequency mode found in inviscid
flow.

5. CONCLUSIONS

A method to solve the Thin-Layer Navier—Stokes/Euler equations for two-dimensional
aeroelastic applications has been presented. The method employs large time steps, O(10) per
period, while accuracy is maintained by solving the nonlinear unsteady equations using
subiterations.

The results of the method demonstrate an adequate quality for a wide spectrum of
two-dimensional applications.
Figure 13. Comparison of calculated flutter boundaries of the viscous and inviscid flow cases.



Figure 14. Comparison of calculated nondimensional frequency at the flutter boundaries of the viscous and
inviscid flow cases.
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The computational requirements admit two-dimensional aeroelastic simulations to be
performed on a routine basis. The efficiency is obtained mainly from the freedom to take
large time steps during the simulations.

The present method will be further developed and exploited for the study of flow
characteristics of aeroelastic phenomena involving strong viscous interactions in transonic
flow.
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APPENDIX: NOMENCLATURE

a speed of sound; offset EA downstream of semichord, normalized by b
b, c semichord, chord
C

L
lift coefficient

C
M

moment coefficient, positive nose up
h inverse Jacobian (J~1); vertical displacement of EA, normalized by b
Ia moment of inertia about EA,"mb2r2ak reduced frequency, ub/»

=
, kinetic energy,"1

2
(u2#w2)

K
h
, Ka stiffness constants

Pr Prandtl number,"kC
p
/k

Re,Re Reynolds numbers,"o»
=
c/k, oa

=
c/k

ra radius of gyration, nondimensionalized by b
»* speed index,"»

=
/(buaJk)

x [h, a]T
xa offset EA downstream of CG, normalized by b
c specific heat ratio,"1)4
k mass ratio, m/(nob2), coefficient of viscosity, k"k

L
#k

Tu
h
, ua uncoupled frequencies
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